Discoveries in the Adolescent Brain

Implications for Teaching & Learning

Dr. Jeb Schenck Knowa Inc. Knowa@directairnet.com 307 864 3982

Modern Understanding Started With An Accident

Phineas Gage

The Brain is the most complex system in the universe

The Context:

How The Brain Grows

Brain Grows at the Cell Level

Neurons Grow More Connections Use it or Lose it

Pruning & Growing Dendritic Spines

Some knowledge about the brain is becoming common

Cycles of Brain Growth

- 3 Cycles during adolescence, NOT STAGES
- 10-12 Years (middle school)
- 14-16 Years (Frosh-Soph)
- 18-20 Years (Seniors +)
- Cycles have chaos-fractal patterns

(From K. Fischer, 2000)

Inhibitory Controls Among Last to Mature:

- Implusivity
- Distractibility
- •Higher Reasoning-Logic

Adolescence:

(not yet fully adult brain)

Age 10-11 to 25/30 years

- Have difficulty recognizing patterns
- Less impulse control
- Less planning/anticipating consequences
- Less emotional control

Skill Acquisition

Time

Use It or Lose It

Implications

- Trained teachers elicit higher performances
- Computers aren't able to "read" the person
- No errors = little or no learning
- w/ea new skill, performance initially drops

OLD School

Non-expert trainers (just as patient is not a expert just because they've experienced medicine, a parent is not an expert just because they drive)

Few controlled mistakes?

We process information to find Patterns

Patterns

- Some have Emotional Significance
- Certain Patterns Change our Attention

Patterns Recognition Attention

Patterns Recognition Attention

Implications

- Students must first recognize patterns
- Brain recognizes *large* differences first, then smaller ones...(The snake body easier to spot than head)
- Suggests teaching subtleties after teaching initial large differences.

OLD School:

- We did not directly and repeatedly work on pattern recognition
- Students became confused trying to recognize small differences

Emotions

- Powerful learning tool
- Experiences are emotion laden
- Rarely forgotten when there are personal consequences

Emotions Affect Learning

If it's emotionally important, the brain pays attention

Incomplete Frontal Lobe Development In A Group

- What happens to judgment?
- What happens to anticipating how <u>others</u> will feel?
- What happens to anticipating how <u>they</u> will feel?

Implications

- Learning events with high personal significance are better remembered (High valence and salience)
- Learning events with personal consequence are better remembered*
- Suggests actual practice (simulated or closed course learning with errors..) better remembered

Old School

We talked, but students did not *experience*

They did not experience significant failure in controlled conditions

*There is a genetic deficit for about 30% of drivers;

BDNF Val⁶⁶Met Polymorphism Influences Motor System Function in the Human Brain by McHughen,

Cramer, et al. Cerebral Cortex, 2009, doi:10.1093/cercor/bhp189

Their Perception Is Their Reality

<u>Perception</u> of threat
affects the ability to THINK & LEARN

In effect, all animals are under stringent selection pressure to be as stupid as they can get away with.

Richerson & Boyd, Not By Genes Alone, 2005.

The default state in solving a problem is to do as little as possible.

Brain in default state

Attention

Applied Cognitive Laboratory University of Utah: David Strayer Pl

Attention

- Mirror Systems & Modeling
- Divided Attention
- Limited Capacity (with Working Memory)
- It is NOT a matter of learning styles (EX. visual learner vs. auditory learner is a neuromyth*)

Attention

Multitasking Effectively is a Myth

Divided Attention

Attention Systems are limited: What is it,
 Where is it?

A Demonstration: **Attention Interference**

- What did you see?
- What happens when there is a distraction?
- What does that suggest about distracting a driver?

Implications

- The brain doesn't multitask (This applies to instruction as well as driving)
- The brain pays attention to modeling (both good & bad)
- Interspersed learning better than blocks of concentrated learning
- Weave between classroom-simulation-field

OLD School

Taking notes & listening

Blocks of classroom-simulation, followed by field experience No field experience until well after "lecture"

Working Memory

It is what your are thinking about RIGHT NOW!

Mental Reserves

 1 task 100% max available

 2 tasks 50% max available for <u>each</u> task

2 Tasks

- Each task needs 1 hemisphere
- 3rd task?

Mental Reserves

- 3 tasks 33% for each?
- Some tasks need more mental reserve, Ex.
 Driving, finding buttons, reading text

3 Tasks

- No hemisphere/brain available
- Performance drops precipitously

Charron & Koechlin, 2010 Ophir, Nass, & Wagner, 2009

Decision Making:

Combines

Emotion +Attention +Memory

Decision Making

- We THINK we're are making a conscious choice
- But the mind has already decided
- 1st Decision is made non-consciously
- 2nd Then we are consciously "let in on it"
- How do we train for this?
- Train for BOTH non-conscious & conscious levels

Implications

- WM easily overloaded
- WM can be trained to have more information readily available (Cogmeg®)
- Skills moved up to automaticity frees more Working Memory
 & more Attention Reserves for processing current information
- Genetic deficits interfere, but may possibly be trained around
- Vigilance may last only 10-30 minutes... More accidents?

Old School

Lots of information, few or no pauses,

Passive initial learning (student is the "receiver" of information)

Students play catch up

Long-Term Memory

Stabilizes in about 10-14 days

Long-Term Memory

- Memory stabilizes after about 10-14 days1
- Distributed Practice Effect, Practice events further apart are harder, but produce longer lasting memory²
- Test Effect, Repeated Practice under real conditions is better than only a few real practices.3
- Suggests Behind the Wheel in subtle-threshold conditions can be very important

- 1. Schenck, J. (2003)
- 2. Rohrer, D. & Pashler, H. (2007).
- 3. Roediger, H.L., & Karpicke, J. D. (2006).

Implications

- Experiential learning better remembered than classroom lecture
- Practices/tests spaced
- ACTION + creates BDNF & strong memories

Old School

Testing typically within a day or two of classroom lecture Assessments lacked authentic/simulated conditions

BDNF (Brain Derived NeuroFactor) promotes dendrite growth & connections,

Generated by experience & physical activity

Genetic Issues

- 30% may be have a mutation reduces/prevents traditional experiential learning* (Clearly procedural memories are made—why the difference in procedural memory?)
- Apparently several possible procedural memories
- Alternative training may be needed, possibly different developmental learning curve
- RNA silencing protein? Dopamine role?
- * BDNF Val⁶⁶Met Polymorphism Influences Motor System Function in the Human Brain by McHughen, Cramer, et al. Cerebral Cortex, 2009, doi:10.1093/cercor/bhp189

Declarative or Explicit Memory

Non-Declarative or Implicit Memory

Repeated
Events or
Semantic
Memory,
facts,
knowledge,
language

Single Event
Memory or
Episodic
Personal
Experiences,
events with
specific time
and place

Procedural skills, how to do something

Perceptual

Experiential Ed

Considerations

- Trained teachers elicit higher performances
- No errors = little or no learning
- w/ea new skill, performance initially drops
- directly and repeatedly work on pattern recognition
- Students become confused trying to recognize small differences
- Brain recognizes large differences first, then smaller ones...
- Suggests teaching subtleties after initial large differences.
- Learning events with high personal significance are better remembered (High valence and salience)
- Learning events with personal consequence are better remembered*
- Suggests actual practice (simulated or closed course learning with errors... are better remembered
- The brain doesn't multitask (This applies to instruction as well as driving)
- The brain pays attention to modeling (both good & bad)
- Interspersed learning better than blocks of concentrated learning
- Weave between classroom-simulation-field
- Train for BOTH non-conscious & conscious levels (automaticity)
- WM easily overloaded
- WM can be trained to have more information readily available (Cogmed®)
- Neuroerognomics of attention & vigilance
- Vigilance may be trained? Monitor with Doppler Sonography—TDS Transcranial Doppler Sonography- portable
- Experiential learning better remembered than classroom lecture
- Practices/tests spaced
- ACTION + creates BDNF & strong memories
- 30% with genetic variation reduces experiential learning, possible alternative training needed

References

- Charron, S. & Koechlin, E., (2010). Divided representatino of concurrent goals in the human frontal lobes. Science, 3238(5976), 360-363. doi: 10.1126/science 1183614
- Coch, D., Fischer, K., & Dawson, G. (2007). Human behavior, learning and the developing brain: Typical Development. New York: Guilford Press.
- Cowan, N. (2005). Working Memory Capacity, New York: Psychology Press
- Fischer, K. (2008), Dynamic Cycles of cognitive and brain development: Measuring growth in mind, brain, and education. In A.M. Battro & K.W. Fischer (Eds.), The educated brain. Cambridge, UK: Cambridge University Press. 127-150
- McHugen & Cramer, et al. (2009) Cerebral Cortex, BDNF Val⁶⁶Met Polymorphism Influences Motor System Function in the Human Brain. doi:10.1093/cercor/bhp189
- Ophir, E., Nass, C., & Wagner, A. (2009). Cognitive control in media multitaskers. Doi: 10.1073/pnas.0903620106
- Parasuraman, R., & Rizz, M., Neuroergonomics: The brain at work, Vol. 195177614
- Roediger, H.L., & Karpicke, J. D. (2006). Psychological Science, 17(3). Test-enhanced learning, taking memory tests improves long-term retention.
- Rohrer, D. & Pashler, H. (2007). Increasing retention without increasing study time. Current Directions in Psychological Science, 16(4), 183-186.
- Ruhland, R., & van Geert, P., (1998). Jumping into syntax: Transitions in the development of closed class words. British Journal of Developmental Psychology, 16(Pt.1), 65-95.
- Schenck, J., (2003). Learning, Teaching, and The Brain, A practical guide for educators, Thermopolis, WY: Knowa Publishing.
- Schultz, N., et al (2009) A transcranial doppler sonography study of shoot/don't shoot responding, Behavior Research Methods, doi: 10.3758/BRM.41.3.593 (2009) Behavior Research Methods, 41, 593-597.